Structurally driven one-dimensional electron confinement in sub-5-nm graphene nanowrinkles

نویسندگان

  • Hyunseob Lim
  • Jaehoon Jung
  • Rodney S. Ruoff
  • Yousoo Kim
چکیده

Graphene-based carbon materials such as fullerenes, carbon nanotubes, and graphenes have distinct and unique electronic properties that depend on their dimensionality and geometric structures. Graphene wrinkles with pseudo one-dimensional structures have been observed in a graphene sheet. However, their one-dimensional electronic properties have never been observed because of their large widths. Here we report the unique electronic structure of graphene nanowrinkles in a graphene sheet grown on Ni(111), the width of which was small enough to cause one-dimensional electron confinement. Use of spatially resolved, scanning tunnelling spectroscopy revealed bandgap opening and a one-dimensional van Hove singularity in the graphene nanowrinkles, as well as the chemical potential distribution across the graphene nanowrinkles. This observation allows us to realize a metallic-semiconducting-metallic junction in a single graphene sheet. Our demonstration of one-dimensional electron confinement in graphene provides the novel possibility of controlling its electronic properties not by chemical modification but by 'mechanical structuring'.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Significantly reduced thermal conductivity and enhanced thermoelectric properties of single- and bi-layer graphene nanomeshes with sub-10nm neck-width

When graphene is shrunk into ~10 nm scale graphene nanoribbons or nanomesh structures, it is expected that not only electrical properties but also thermal conductivity and thermoelectric property are significantly altered due to the quantum confinement effect and extrinsic phonon-edge scattering. Here, we fabricate large-area, sub10 nm singleand bilayer graphene nanomeshes from block copolymer ...

متن کامل

The effect of graphite sources on preparation of Photoluminescent graphene nano-sheets for biomedical imaging

Objective(s): Graphene as two-dimensional (2D) materials have attracted wide attention in different fields such as biomedical imaging. Ultra-small graphene nano-sheets (UGNSs) have been designated as low dimensional graphene sheets with lateral dimensions less than few nanometres (≤ 500 nm) in one, two or few layers. Several studies have proven that the process of acidic exfoliation and oxidati...

متن کامل

Structural Properties of Graphene and Carbon Nanotubes

Graphene was discovered in 2004 and has since sparked much interest in the field of condensed matter physics. Graphene is an atomically thin sheet of carbon arranged in a two dimensional honeycomb crystal. The MerminWagner Theorem predicts that a perfect crystal can not exist in two dimensional space, so it was surprising when graphene was first observed[1]. The existence of graphene has since ...

متن کامل

A visible light driven doped TiO2 nanophotocatalyst: Preparation and characterization

A useful nanophotocatalyst (La,S-TiO2) was prepared by a sol-gel method and characterized by UV–vis diffuse reflectance spectroscopy (DRS), X-ray diffraction (XRD), photoluminescence emission spectroscopy (PL) and scanning electron microscopy (FESEM). The results showed that the La,S-TiO2, which calcined at 550 °C, contained only anatase phaseand its crystal size was 23 nm...

متن کامل

A visible light driven doped TiO2 nanophotocatalyst: Preparation and characterization

A useful nanophotocatalyst (La,S-TiO2) was prepared by a sol-gel method and characterized by UV–vis diffuse reflectance spectroscopy (DRS), X-ray diffraction (XRD), photoluminescence emission spectroscopy (PL) and scanning electron microscopy (FESEM). The results showed that the La,S-TiO2, which calcined at 550 °C, contained only anatase phaseand its crystal size was 23 nm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015